

Semiconductor Manufacturing Using EUV Lithography

Progress and Remaining Challenges

Anthony Yen

7 October 2013

TSMC Sales Growth

2Q 2013 Sales US\$5.23B

Sales Breakdown by Technology

Sales Breakdown by Application

Optical lithography has sustained Moore's law for ~ 5 decades

J. Sturtevant, B.J. Lin, A. Yen

Node-to-Node Wafer Cost Trend

NTT Experiments on EUV Lithography

Kinoshita et al., the 47th Autumn Meeting, Japan Society of Applied Physics, 1986

Slide Courtesy of Hiroo Kinoshita

Bell Lab Experiments on EUV Lithography

Pitch = 100 nm

Bjorkholm et al., JVST B 8, 1509, Nov/Dec 1990

Reflective EUV Mask Proposed and Fabricated

Fig. 3. Scanning electron micrographs of an XRPL mask. The bright regions are areas of 100 nm thick gold, patterned onto a soft x-ray multilayer mirror.

Hawryluk et al., JVST B7, 1702, Nov/Dec 1989

EUV Lithography Using NXE3100

NXE3100 EUV scanner exposing wafers at TSMC since Nov 2011

Reticle stage

λ 13.5 nm
NA 0.25
Field 26 x 33 mm²
Mag 4x

Collector
Intermediate focus
Projection optics
Source
Wafer stage

Throughput: 8 wph using ASML's ATP procedure

Resolution Limit of NXE3100

with dipole illumination

TSMC Bronerty

EUV definition of spaces etched into silicon TSMC Property

Pitch = 46 nm; NA = 0.25; quadrupole illumination

EUV processing of metal layer of logic circuit

After hard-mask etch-through

Laser-Produced Plasma EUV Source

EUV Source Power

Status

- 50 W with <±0.5% Dose Stability
- MOPA + Pre-pulse
- Dose control in spec over 1 hr. run
 - ♦ Die yield exceeded 99.7%

Goals

- 250 W to yield 125 wph, ATP spec
- > 250 W for further CoO reduction and increase in exposure energy
 - ◆ Time to pay more serious attention to alternative source technologies

Data and Graphs Courtesy of ASML

EUV Mask in a Dual-Pod

- (a) Conductive layer
- (b) Low thermal expansion material
- (c) Mo/Si multilayer
- (d) Absorber

Life Cycle of a EUV Mask

OOS: Out of Spec; FS: Front Side; BS: Back Side

Key equipment in EUV mask metrology

Mask Blank Inspector

λ = 193 nm Bl λ = 13.5 nm Bl

Patterned Mask Inspector

 $\lambda = 193 \text{ nm}$ PMI

E-beam PMI

λ = 13.5 nm PMI

Mask
Defect/Repair
Validation Tool

Wafer Printing

 λ = 13.5 nm AIMS Tool

2012

2014

2016

Patterned-EUV-mask Inspection

Detection resolution of a DUV inspector

	T.		Т.				_	_								
Pattern shift		Programmed defect size on mask (nm)	4	5	6	7	8	9	10	11	12	13	14	15	16	X
		High-sensitivity setting														
		Low-sensitivity setting														
CD-over		Programmed defect size on mask (nm)	6	8	10	12	14	16	18	20	22	24	26	28	30	X
		High-sensitivity setting														
		Low-sensitivity setting														
CD-under		Programmed defect size on mask (nm)	-6	-8	-10	-12	-14	-16	-18	-20	-22	-24	-26	-28	-30	X
		High-sensitivity setting														->
		Low-sensitivity setting														
Extursion		Programmed defect size on mask (nm)	56	64	72	80	88	96	104	112	120	128	136	144	152	X
		High-sensitivity setting														
		Low-sensitivity setting														
Pin-hole		Programmed defect size on mask (nm)	28	32	36	40	44	48	52	56	60	64	68	72	7 6	X
		High-sensitivity setting														
		Low-sensitivity setting														
Intrusion		Programmed defect size on mask (nm)	56	64	72	80	88	96	104	112	120	128	136	144	152	X
		High-sensitivity setting														
		Low-sensitivity setting														
Pin-dot		Programmed defect size on mask (nm)	28	32	36	40	44	48	52	56	60	64	68	72	76	X
		High-sensitivity setting														
		Low-sensitivity setting														

SEM image on wafer

False defects in EUV mask pattern inspection

Rendered images

Inspection images

Mask SEM images

More accurate optical modeling is needed for better image rendering to further minimize false defects

TSMC Property

3D profile control is key in EUV mask repair

Mask SEM image

Wafer printing results

EUV absorber defects are repairable

Opaque Defects

Clear (Missing) Defects

Mitigation of mask blank defects by a global shift of mask patterns

Without pattern shift

This blank defect (~70nm on mask) is in the clear area and will be printed on wafer

With pattern shift

After global pattern shift, a blank defect shown above is now hidden beneath the Ta absorber

EUV mask blank defect reduction roadmap

Courtesy of HOYA Corporation

Use of Nano-machining and electron-beam mask repair tools to eliminate bumps and pits on LTEM substrates

Elimination of bump defect on LTEM

Elimination of pit defect on LTEM

Compensation of mask blank defects

Usual compensation repair: wafer image

Defocus (nm)

Novel compensation repair: wafer image

Defocus (nm)

Compensation repair aims to form a more tolerable image on wafer

TSMC Property

PRE enhancement in mask cleaning using complementary physical force

Particle size S: 40~80 nm; M: 81~150 nm; L: >150 nm

Conventional mask cleaning cannot easily remove compressed particles on the back side

AFM images of post-chucking backside particles

Mechanical-force cleaning of mask back side TSMC Property

TSMC Property

Progress on Pellicles for EUV Masks

- Requirements
 - > 90% EUV transmission
 - 110 x 144 mm² in size
- Progress
 - **■** Polysilicon membrane
 - ♦ 55 nm in thickness
 - > 82% EUV transmission
 - 80 x 80 mm² in size

Data and Photo Courtesy of ASML

- Remaining Challenges/Opportunities
 - Turn membrane into a pellicle
 - Commercial suppliers to take over

To Make EUV HVM a Reality

- Progress towards 250 W source power must not slow down
 - 80-W target by end of 2013 must happen
 - 250-W scanners should be operational in 2015
- Native defects in mask blanks must be further reduced by an order of magnitude
 - From best-case ~100 today to mostly ~10 (at ~30 nm in size)
 - Suppliers must make necessary investments in new and dedicated processing tools for blank fabrication
- Continuous progress must take place on realizing EUV pellicles (110 x 144 mm² in size)
 - Must be > 90% per-pass transparency
 - Potential commercial suppliers should seize this opportunity and not withdraw from the challenge